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The two-dimensional Ising model with competing Glauber and Kawasaki dynamics is studied by Monte
Carlo simulations. We show that the model exhibits the phenomenon of self-organization when the Kawasaki
dynamics is the dominant one. For this model we show that the values of the critical exponents calculated at
the stationary states are in accordance with the exact ones known for the equilibrium Ising model. These results
give support to the idea that the equilibrium and nonequilibrium Ising models, which exhibit up-down sym-
metry, belong to the same universality class.@S1063-651X~96!06405-7#

PACS number~s!: 64.60.Ht

The study of nonequilibrium Ising spin systems appears
naturally when the spins are subject to different dynamics.
For instance, Gonzalez-Mirandaet al. @1# have considered an
Ising spin model where the Glauber@2# and the Kawasaki@3#
dynamics drive the magnetic system. For the Glauber pro-
cess, the system experiments single spin flips due to its con-
tact with the heat bath at fixed temperature. On the other
hand, for the Kawasaki process the transition rates are inde-
pendent of spin configurations and this is equivalent to a
contact with a heat bath of infinite temperature. When we
consider only the independent configuration Kawasaki pro-
cess, the correlation between sites are absent and the station-
ary states are of the Bernoulli type. As in the Kawasaki pro-
cess the magnetization is conserved by the spin exchanges,
the number of microscopic states is very large for a given
value of the magnetization. Gonzalez-Mirandaet al. @1# have
found, for finite values of the Kawasaki exchange rate, the
phase diagram of the model in the plane temperature versus
the probability (p) of occurring the Kawasaki process. Their
phase diagram, calculated through Monte Carlo simulations
in two dimensions, shows a line of continuous transitions
between the ferro- and paramagnetic phases. The tempera-
ture decreases as a function ofp, and appears a nonequilib-
rium tricritical point, where the transition changes to first
order. Dickman@4#, using the pair approximation for the
same model, also obtained an equivalent phase diagram with
slightly different values for the location of the tricritical
point. In particular, if the transition rate for the exchange of
spins becomes very large, the fast exchange of spins leads to
a diffusion-reaction equation for the local magnetization at
infinite temperature@5,6#.

Another very interesting feature about the competition be-
tween the Glauber and Kawasaki processes is the emergence
of the phenomenon of self-organization@7#. This can be ob-
served when the ferromagnetic Ising system is coupled to a
heat bath, whose stochastic dynamics is given by the one-
spin flip Glauber process, and subject to an external flux of
energy, which can be simulated by a Kawasaki process that
favors an increase in the energy of the system. It was shown
in Ref. @7# that, within the dynamical pair approximation,
and for a two-dimensional square lattice, the system goes
continuously from the ferromagnetic to paramagnetic state as
we increase the flux of energy. If we further increase the flux
of energy, the system self-organizes into an antiferromag-

netic phase. We would like to point out that the pair approxi-
mation gives no self-organization when the exchange cou-
pling between the nearest-neighboring spins is of the
antiferromagnetic type@8#. In this case, our two-dimensional
calculations show that the antiferromagnetic order is de-
stroyed by a small input of energy into the system.

We have wondered if Monte Carlo simulation on the two-
dimensional version of the ferromagnetic system would
maintain the picture of a self-organization phenomenon. As a
matter of fact, we consider a ferromagnetic Ising model on a
square lattice withN lattice sites. The state of the system is
represented bys5(s1 ,s2 ,...,sN), where the spin variable
assumes the valuess i561. The energy of the system in the
states is given by

E~s!52J(
~ i , j !

s is j , ~1!

where in the summation only spins that are nearest neighbors
are considered andJ.0. Let P(s,t) be the probability of
finding the system in the states at time t. The evolution of
P(s,t) is given by the following master equation:

dP~s,t !

dt
5(

s8
@P~s8,t !W~s8,s!2P~s,t !W~s,s8!#,

~2!

whereW(s,s8) gives the probability, per unit time, for the
transition from the states8 to states. We assume that the
two competing processes can be written as

W~s8,s!5pWG~s8,s!1~12p!WK~s8,s!. ~3!

In the above equation

WG~s8,s!5(
i51

N

ds
18 ,s1

ds
28 ,s2

,...,ds
i8 ,2s i

,...,ds
N8 ,sN

wi~s!

~4!

is the one-spin flip Glauber process which simulates the con-
tact of our system with the heat bath at absolute temperature
T, and
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WK~s8,s!

5 (
~ i , j !

ds
18 ,s1

ds
28 ,s2

,...,ds
i8 ,s j

,...,ds
j8 ,s i

,...,ds
N8 ,sN

wi j ~s!

~5!

is the two-spin exchange Kawasaki process, which simulates
the flux of energy into the system. In these equationswi(s)
andwi j (s) are, respectively, the probability, per unit time,
of flipping spin i and the probability, per unit time, of ex-
changing two nearest-neighboring spinsi and j. In the fol-
lowing we write the prescriptions we have taken forwi(s)
andwi j (s):

wi~s!5minF1,expS 2
DEi

kBT
D G ~6!

and

wi j ~s!5H 0, for DEi j<0

1, for DEi j.0,
~7!

whereDEi is the change in energy after flipping spini, and
DEi j is the change in energy after exchanging the neighbor-
ing spinsi and j.

We have performed Monte Carlo simulations on a square
lattice withL3L5N sites, with the values ofL ranging from
L56 up toL580. We have used in all of our simulations
periodic boundary conditions. Also, we have started the
simulations with different initial states in order to guarantee
that the final stationary states we use in our calculations are
the correct ones. For a given temperatureT, and a chosen
value of the probabilityp, we choose at random a spini,
from a given initial configuration. Then, we generate a ran-
dom numberj1 between zero and unity. Ifj1<p we choose
to perform the Glauber process; in this process, we calculate
the value ofwi(s). We again generate another random num-
ber j2: if j2<wi(s), we flip spin i, otherwise do not. If
j1.p we go over the Kawasaki process. We generate an-
other random numberj3 in order to select one of the four
nearest neighbors of the spini, sayj. Then we find the value
of wi j and we exchange the selected spins only ifwi j51. We
note that after 1043N Monte Carlo steps the stationary re-
gime was established, for all lattice sizes we consider. One
Monte Carlo step equalsN spin flip or exchange of spins
trials. In order to estimate the quantities of interest, we have
used 53104 Monte Carlo steps to calculate the averages for
any lattice size.

In order to locate the critical temperature for every value
of p, we have plotted the reduced fourth-order cumulant@9#
UL(T) @see Eq.~10! below# as a function of temperatureT,
for several values ofL. The resulting phase diagram can be
seen in Fig. 1, where we have plottedh5exp(2J/kBT) as a
function of (12p). Clearly, we can see that this phase dia-
gram is rather different from that obtained through the dy-
namical pair approximation@7#. Here, we find a very small
region in the phase diagram corresponding to the antiferro-
magnetic phase. Then, the self-organization, that is, the
emergence of the antiferromagnetic phase from the disor-
dered paramagnetic phase occurs only for high values of the
flux of energy into the system. This phase occupies a narrow

region of the phase diagram, withp between the values 0 and
p50.075. Differently of the work of Gonzalez-Mirandaet
al. @1# where the transition rate associated with the Kawasaki
process was independent of the spin configurations, here we
do not observe any dynamical tricritical behavior. On the
other hand, the critical temperature exhibits a slight maxi-
mum around the valuep50.3. For values ofp,0.3, where
the Kawasaki process is the dominant one, the critical tem-
perature for the stationary states decreases towards the zero
temperature asp→0. For the pure Kawasaki casep50 the
evolution of the system is the same for whatever tempera-
ture, that is, we always go to a state of maximum energy
compatible with a given initial magnetization. For instance,
if the initial state is a paramagnetic one, the final state will be
the one where the staggered magnetization per spin reaches
its maximum value, that is, 1.

By employing the finite-size scaling relations@9,10# we
can evaluate the stationary critical exponents associated with
these transitions. Then for a system withL3L5N spins,
with periodic boundary conditions, we define, at the station-
ary states, the ‘‘magnetization’’ per spinML and the ‘‘sus-
ceptibility’’ per spinxL as

ML5^umu&, ~8!

xL5$^m2&2^umu&2%, ~9!

wherem51/N( i51
N s i . We also define the reduced fourth-

order cumulantUL as

UL512
^m4&
3^m2&2

. ~10!

FIG. 1. Phase diagram of the two-dimensional kinetic ferromag-
netic Ising model with competing Glauber~probability p! and Ka-
wasaki~probability 12p! dynamics. The parameterh is given by
h5exp(2J/kBT). The system exhibits the paramagnetic~P!, ferro-
magnetic~F!, and antiferromagnetic~AF! phases. The broken lines
serve as a guide to the eyes.
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These above defined quantities obey the following finite-size
scaling relations in the neighborhood of the stationary criti-
cal point:

ML~T!5L2b/nM0~L
1/ne!, ~11!

xL~T!5L ~g/n!22x0~L
1/ne!, ~12!

UL~T!5U0~L
1/ne!, ~13!

where e5[(T2Tc)/Tc], Tc being the critical temperature
for each value ofp.

If we derive the Eq.~13! with respect the temperatureT
we obtain the following scaling relation:

UL8~T!5L1/n
U08~L

1/ne!

Tc
, ~14!

so thatU L8(Tc)5L1/n[U 08(0)/Tc]. Then, we can find the
critical exponentn from the slope of the straight line which
is the best fit to the data point ofU L8(Tc) for each value ofL.
In Fig. 2 we exhibit the behavior ofn as a function of (1
2p). Surprisingly, for this Ising model with competing Ka-
wasaki and Glauber dynamics, the stationary critical expo-
nent n is almost equal to 1. This interesting behavior is in
agreement with the arguments given by Grinstein, Jaya-
parash, and Yu He@11# that the equilibrium and nonequilib-
rium stochastic spin systems, which present the up-down
symmetry, fall in the same universality class. In order to
corroborate these arguments, we also calculate the stationary
critical exponentsb andg from the log-log plots of the mag-
netizationML and of the susceptibilityxL as a function ofL,
respectively. For every log-log plot we have calculated the
values ofML and xL at the critical temperatureTc(p), as

exhibited in Fig. 1. In Figs. 3 and 4 we exhibit the results we
have found forb/n andg/n for several values ofp, respec-
tively. The exact values for the equilibrium Ising model ex-
ponents are well known and are given byn51, b51/8, and
g57/4. As we can see our estimated values forb/n andg/n,

FIG. 2. Stationary correlation critical exponentn as a function
of (12p) at the transition point between the ferro- and paramag-
netic phases. The error bars give the accuracy of our Monte Carlo
data points. The estimated values ofn are around the corresponding
equilibrium valuen51.

FIG. 3. Stationary values of the ratiob/n as a function of (1
2p) at the transition point between the ferro- and paramagnetic
phases. We see that our estimated values of this ratio oscillate
around the exact equilibrium value 1/8.

FIG. 4. Stationary values of the ratiog/n as a function of (12p)
at the transition point between the ferro- and paramagnetic phases.
Within the accuracy of our data points, the values of this ratio
oscillate around the exact equilibrium value 7/4.
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reported on Figs. 3 and 4, are in accordance with the corre-
sponding values at equilibrium.

Although we do not present the detailed calculations con-
cerning the continuous transition between the paramagnetic
and antiferromagnetic phases, the critical temperature and
the critical exponents can be obtained in a similar manner as
we have done for the ferromagnetic-paramagnetic transition.
For instance, ifp50.03, we have found the following val-
ues: Tc56.8260.02, n50.9760.05, b/n50.1360.01, and
g/n51.8360.06.

In conclusion, we have presented a very simple nonequi-
librium model, where the stationary critical behavior is in the
same universality class as the two-dimensional equilibrium

Ising model. We think that our model, which exhibits the
self-organization phenomenon, due the competition between
the Glauber and configuration dependent Kawasaki dynam-
ics, preserves the main features of the up-down symmetry.
The stationary critical exponents we have found in our
Monte Carlo simulations are in accordance with the exact
ones known for the square Ising model with periodic bound-
ary conditions.
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