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Critical exponents of the Ising model with competing Glauber and Kawasaki dynamics
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The two-dimensional Ising model with competing Glauber and Kawasaki dynamics is studied by Monte
Carlo simulations. We show that the model exhibits the phenomenon of self-organization when the Kawasaki
dynamics is the dominant one. For this model we show that the values of the critical exponents calculated at
the stationary states are in accordance with the exact ones known for the equilibrium Ising model. These results
give support to the idea that the equilibrium and nonequilibrium Ising models, which exhibit up-down sym-
metry, belong to the same universality clgs$1063-651X96)06405-1

PACS numbd(s): 64.60.Ht

The study of nonequilibrium Ising spin systems appearsetic phase. We would like to point out that the pair approxi-
naturally when the spins are subject to different dynamicsmation gives no self-organization when the exchange cou-
For instance, Gonzalez-Miran@#al.[1] have considered an pling between the nearest-neighboring spins is of the
Ising spin model where the Glaubi@] and the KawasaKid] ~ antiferromagnetic typg8]. In this case, our two-dimensional
dynamics drive the magnetic system. For the Glauber procalculations show that the antiferromagnetic order is de-
cess, the system experiments single spin flips due to its corfiroyed by a small input of energy into the system.
tact with the heat bath at fixed temperature. On the other We have wondered if Monte Carlo simulation on the two-
hand, for the Kawasaki process the transition rates are indélimensional version of the ferromagnetic system would
pendent of spin configurations and this is equivalent to @naintain the picture of a self-organization phenomenon. As a
contact with a heat bath of infinite temperature. When wematter of fact, we consider a ferromagnetic Ising model on a
consider only the independent configuration Kawasaki prosquare lattice withN lattice sites. The state of the system is
cess, the correlation between sites are absent and the statidgPresented by=(o,075,...,0n), where the spin variable
ary states are of the Bernoulli type. As in the Kawasaki pro2ssumes the valueg =+ 1. The energy of the system in the
cess the magnetization is conserved by the spin exchangedateo is given by
the number of microscopic states is very large for a given
value of the magnetization. Gonzalez-Miraretal.[1] have
found, for finite values of the Kawasaki exchange rate, the E(o)= _‘](iEj) gigj, 2)
phase diagram of the model in the plane temperature versus ’

the probability p) of occurring the Kawasaki process. Their yhere in the summation only spins that are nearest neighbors
phase diagram, calculated through Monte Carlo simulationgre considered and>0. Let P(o,t) be the probability of
in two dimensions, shows a line of continuous transitionsfinging the system in the stateat timet. The evolution of

between the ferro- and paramagnetic phases. The temperg( t) is given by the following master equation:
ture decreases as a functionmpfand appears a nonequilib-

rium tricritical point, where the transition changes to first

. : . ha dP(o,t)
order. Dickman[4], using the pair approximation for the —:z [P(a’ H)W(a',0)—P(o,t)W(0,0")],
same model, also obtained an equivalent phase diagram with dt o’
slightly different values for the location of the tricritical 2
point. In particular, if the transition rate for the exchange of . N o
spins becomes very large, the fast exchange of spins leads thereW(o,0”) gives the, probability, per unit time, for the
a diffusion-reaction equation for the local magnetization atransition from the state’ to statec. We assume that the

infinite temperaturgs,6]. two competing processes can be written as
Another very interesting feature about the competition be-
tween the Glauber and Kawasaki processes is the emergence W(o',0)=pWg(o',0)+(1—p)Wk(co', o). 3

of the phenomenon of self-organizatipf. This can be ob-

served when the ferromagnetic Ising system is coupled to g the above equation
heat bath, whose stochastic dynamics is given by the one-

spin flip Glauber process, and subject to an external flux of

energy, which can be simulated by a Kawasaki process thaWG(U/,U): 2 S
favors an increase in the energy of the system. It was shown i=1
in Ref. [7] that, within the dynamical pair approximation, (4)

and for a two-dimensional square lattice, the system goes

continuously from the ferromagnetic to paramagnetic state ais the one-spin flip Glauber process which simulates the con-
we increase the flux of energy. If we further increase the fluxact of our system with the heat bath at absolute temperature
of energy, the system self-organizes into an antiferromagf, and
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is the two-spin exchange Kawasaki process, which simulates
the flux of energy into the system. In these equatf(sr) 06
andw;;(o) are, respectively, the probability, per unit time,
of flipping spini and the probability, per unit time, of ex-

&

X : ; - , =y
changing two nearest-neighboring spinandj. In the fol- o4 L
lowing we write the prescriptions we have taken oy o) ’
andWij(O'):
AE; 02} S S
wi(o)=min 1,exp — —— (6) p— " g B—g
kgT
and 0.0 1 1 1 1 )
0.0 0.2 0.4 06 058 1.0
0, for AE;;<O
Wi (o) = 7
(o) 1, for AE;>0, ™ 1-p
whereAE; is the change in energy after flipping spirand FIG. 1. Phase diagram of the two-dimensional kinetic ferromag-
AE;; is the change in energy after exchanging the neighbornetic Ising model with competing Glaubgprobability p) and Ka-
ing spinsi andj. wasaki(probability 1—p) dynamics. The parameter is given by

We have performed Monte Carlo simulations on a squar@=xp(~ J/kgT). The system exhibits the paramagnes, ferro-
lattice withL X L =N sites, with the values df ranging from magnetic(F), a_nd antiferromagnetiAF) phases. The broken lines
L=6 up toL=80. We have used in all of our simulations Serve as a guide to the eyes.
periodic boundary conditions. Also, we have started the ) )
simulations with different initial states in order to guarantee'®9ion of the phase diagram, wigtbetween the values 0 and

that the final stationary states we use in our calculations ar@=0-075. Differently of the work of Gonzalez-Mirandgt
the correct ones. For a given temperatlireand a chosen al. [1] where the transition rate associated with the Kawasaki

value of the probabilityp, we choose at random a spin  Process was independent of the spin configurations, here we
from a given initial configuration. Then, we generate a ran-d0 not observe any dynamical tricritical behavior. On the
dom numbet, between zero and unity. §,<p we choose other hand, the critical temperature exhibits a slight maxi-

to perform the Glauber process; in this process, we calculat®Um around the valup=0.3. For values 0p<0.3, where

the value ofw;(o). We again generate another random num-ihe Kawasaki process is the dominant one, the critical tem-
ber &: if gzg'w_(a) we flip spini, otherwise do not. If perature for the stationary states decreases towards the zero
: I ! ’ .

£>p we go over the Kawasaki process. We generate antemperature ap—0. For the pure Kawasaki cage=0 the

other random numbeg; in order to select one of the four evolution Qf the system is the same for whatgver tempera-
nearest neighbors of the sginsayj. Then we find the value (U'e, that is, we always go to a state of maximum energy
of w;; and we exchange the selected spins oniy;jf=1. We _comp_at_lk_ale with a given initial magnetization. For instance,
note that after 1D<N Monte Carlo steps the stationary re- if the initial state is a paramagnetic one, th_e final state will be
gime was established, for all lattice sizes we consider. On§® One where the staggered magnetization per spin reaches
Monte Carlo step equalll spin flip or exchange of spins 'S maximum value, that is, 1. _ ,

trials. In order to estimate the quantities of interest, we have BY €mploying the finite-size scaling relatiop8,10] we

used 5¢10* Monte Carlo steps to calculate the averages folc@" evaluate the stationary critical exponents associated with
any lattice size. these transitions. Then for a system witkKL=N spins,

In order to locate the critical temperature for every valugWith periodic boundary conditions, we define, at the station-
of p, we have plotted the reduced fourth-order cumufgpt @1 States, the “magnetization” per spM, and the “sus-
U,(T) [see Eq(10) below] as a function of temperatufg ~ CePtibility” per spinx, as
for several values of. The resulting phase diagram can be

seen in Fig. 1, where we have plotteg-exp(—J/kgT) as a M =(|ml), (8)
function of (1—p). Clearly, we can see that this phase dia- ) )
gram is rather different from that obtained through the dy- xi={(m*)—(|m[)*}, 9

namical pair approximatiofi7]. Here, we find a very small N ]

region in the phase diagram corresponding to the antiferrodherem=1/NZi_,o;. We also define the reduced fourth-
magnetic phase. Then, the self-organization, that is, th@rder cumulant), as

emergence of the antiferromagnetic phase from the disor- 4

dered paramagnetic phase occurs only for high values of the U =1— (m%) (10)
flux of energy into the system. This phase occupies a narrow L 3(m?)?"
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FIG. 2. Stationary correlation critical exponentas a function
of (1—p) at the transition point between the ferro- and paramag-
netic phases. The error bars give the accuracy of our Monte Carlo
data points. The estimated valuesuadre around the corresponding
equilibrium valuev=1.

FIG. 3. Stationary values of the ratj@/v as a function of (1

p) at the transition point between the ferro- and paramagnetic
phases. We see that our estimated values of this ratio oscillate
around the exact equilibrium value 1/8.

These above defined quantities obey the following finite-size

scaling relations in the neighborhood of the stationary criti-exhibited in Fig. 1. In Figs. 3 and 4 we exhibit the results we

cal point: have found for8/v and y/v for several values op, respec-
tively. The exact values for the equilibrium Ising model ex-
ponents are well known and are given by 1, =1/8, and

ML(T)=L"#"Mo(L""e), (1) y=7/4. As we can see our estimated valuesgbr and /v,
XL(T)=L"2xq(L ), (12)
U= Uo(Ll/VG), (13 20

where e=[(T—T.)/T.], T, being the critical temperature
for each value op.

If we derive the Eq(13) with respect the temperatufie 19 -
we obtain the following scaling relation:

Ug(LYe)

! — v
UL =L =S,

(14) 18 |-

so thatU [ (T.) =LY [U{(0)/T.]. Then, we can find the é). T
critical exponentr from the slope of the straight line which 17 -

is the best fit to the data point &f| (T,) for each value of.. /
In Fig. 2 we exhibit the behavior of as a function of (1 T

—p). Surprisingly, for this Ising model with competing Ka- 156

wasaki and Glauber dynamics, the stationary critical expo-

nent » is almost equal to 1. This interesting behavior is in
agreement with the arguments given by Grinstein, Jaya-
parash, and Yu HEL1] that the equilibrium and nonequilib- e 02 04 Py 08 10
rium stochastic spin systems, which present the up-down ' ' ' ' ' '
symmetry, fall in the same universality class. In order to
corroborate these arguments, we also calculate the stationary
critical exponent and y from the log-log plots of the mag- FIG. 4. Stationary values of the ratiév as a function of (+ p)
netizationM, and of the susceptibility, as a function ot,  at the transition point between the ferro- and paramagnetic phases.

respectively. For every log-log plot we have calculated thewithin the accuracy of our data points, the values of this ratio
values of M| and y, at the critical temperatur&.(p), as  oscillate around the exact equilibrium value 7/4.
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reported on Figs. 3 and 4, are in accordance with the corrdsing model. We think that our model, which exhibits the
sponding values at equilibrium. self-organization phenomenon, due the competition between
Although we do not present the detailed calculations conthe Glauber and configuration dependent Kawasaki dynam-
cerning the continuous transition between the paramagnetigs, preserves the main features of the up-down symmetry.
and antiferromagnetic phases, the critical temperature anfhe stationary critical exponents we have found in our
the critical exponents can be obtained in a similar manner agionte Carlo simulations are in accordance with the exact

we have done for the ferromagnetic-paramagnetic transitiorapes known for the square Ising model with periodic bound-
For instance, ifp=0.03, we have found the following val- ary conditions.

ues: T,=6.82+0.02, »=0.97+0.05, B/»=0.13+0.01, and
vlv=1.83+0.06. It is a pleasure to thank Mario Jose Oliveira for the

In conclusion, we have presented a very simple nonequimany suggestions and fruitful discussions during the devel-
librium model, where the stationary critical behavior is in theopment of this work. We also acknowledge the Brazilian
same universality class as the two-dimensional equilibriunagencies CNPqg and FINEP for their financial support.
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